DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences

نویسندگان

  • Fanchi Meng
  • Lukasz A. Kurgan
چکیده

MOTIVATION Disordered flexible linkers (DFLs) are disordered regions that serve as flexible linkers/spacers in multi-domain proteins or between structured constituents in domains. They are different from flexible linkers/residues because they are disordered and longer. Availability of experimentally annotated DFLs provides an opportunity to build high-throughput computational predictors of these regions from protein sequences. To date, there are no computational methods that directly predict DFLs and they can be found only indirectly by filtering predicted flexible residues with predictions of disorder. RESULTS We conceptualized, developed and empirically assessed a first-of-its-kind sequence-based predictor of DFLs, DFLpred. This method outputs propensity to form DFLs for each residue in the input sequence. DFLpred uses a small set of empirically selected features that quantify propensities to form certain secondary structures, disordered regions and structured regions, which are processed by a fast linear model. Our high-throughput predictor can be used on the whole-proteome scale; it needs <1 h to predict entire proteome on a single CPU. When assessed on an independent test dataset with low sequence-identity proteins, it secures area under the receiver operating characteristic curve equal 0.715 and outperforms existing alternatives that include methods for the prediction of flexible linkers, flexible residues, intrinsically disordered residues and various combinations of these methods. Prediction on the complete human proteome reveals that about 10% of proteins have a large content of over 30% DFL residues. We also estimate that about 6000 DFL regions are long with ≥30 consecutive residues. AVAILABILITY AND IMPLEMENTATION http://biomine.ece.ualberta.ca/DFLpred/ CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PDP-CON: prediction of domain/linker residues in protein sequences using a consensus approach.

The prediction of domain/linker residues in protein sequences is a crucial task in the functional classification of proteins, homology-based protein structure prediction, and high-throughput structural genomics. In this work, a novel consensus-based machine-learning technique was applied for residue-level prediction of the domain/linker annotations in protein sequences using ordered/disordered ...

متن کامل

A Method for Systematic Assessment of Intrinsically Disordered Protein Regions by NMR

Intrinsically disordered proteins (IDPs) that lack stable conformations and are highly flexible have attracted the attention of biologists. Therefore, the development of a systematic method to identify polypeptide regions that are unstructured in solution is important. We have designed an "indirect/reflected" detection system for evaluating the physicochemical properties of IDPs using nuclear m...

متن کامل

Predicting Disordered Regions in Proteins Based on Decision Trees of Reduced Amino Acid Composition

Intrinsically unstructured proteins (IUPs) are proteins lacking a fixed three dimensional structure or containing long disordered regions. IUPs play an important role in biology and disease. Identifying disordered regions in protein sequences can provide useful information on protein structure and function, and can assist high-throughput protein structure determination. In this paper we present...

متن کامل

High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder

Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We repor...

متن کامل

Accurate Ab Initio and Template-Based Prediction of Short Intrinsically-Disordered Regions by Bidirectional Recurrent Neural Networks Trained on Large-Scale Datasets

Intrinsically-disordered regions lack a well-defined 3D structure, but play key roles in determining the function of many proteins. Although predictors of disorder have been shown to achieve relatively high rates of correct classification of these segments, improvements over the the years have been slow, and accurate methods are needed that are capable of accommodating the ever-increasing amoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016